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Stewartson’s theory for axisymmetric hypersonic flow of a model gas over 
slender bodies with strong viscous interaction and strong shock wave is extended 
to power-law viscosity variation and Prandtl numbers other than one. Flow 
properties at  the body surface and shock are obtained without recourse to 
numerical integration. Numerical computations are presented for axisymmetric 
flow over a three-quarter power-law body with strong shock wave and viscous 
interactions that range from weak to strong. 

1. Introduction 
A slender axisymmetric body with local body radius rw(x), when situated in a 

steady hypersonic stream, disturbs the flow in a limited region known as the 
shock layer. If the flow has sufficient density p, the shock layer consists of a 
viscous boundary layer with characteristic thickness 6(x) adjacent to the body, 
an inviscid layer external to  the boundary layer, and a surrounding shock wave. 
If, in addition, the flow speed is sufficiently great, the shock wave has limiting 
properties and is said to be strong. If also the body grows as xt, the disturbed 
flow is self-similar in that it becomes a function of a single spatial variable 
(Yasuhara 1956). Generally, even the self-similar flow requires numerical 
description because of non-linearities in the mathematics. 

Often of interest are situations in which S/rw < 1. In  such cases, the boundary 
layer is too thin to affect pressures in the shock layer and is equivalent to the 
boundary layer in a related, plane flow. However, as free-stream velocity is 
increased, frictional heating reduces boundary-layer densities and increases IS. 
At some speed, S/rW will no longer be negligible, and the boundary layer then 
interacts weakly with the pressure field. At even greater speeds, or for more 
slender bodies, it is expected that 6/rw $ 1, in which case the boundary layer 
interacts strongly with the pressure field and the body slope retains only a 
minimal influence on pressure. 

Figure 1 depicts hypersonic flow with strong viscous interaction over a slender, 
axisymmetric, three-quarter power-law body. The domain of self-similar flow is 
limited downstream (to the right) by weakness in the shock wave and upstream 
by rarefaction and related effects that are discussed in appendix A. In  figure 1, 
the division of the boundary layer into a viscous convective layer and an inner 
viscous layer is the result of the limit S/rW > 1. Such a division also characterizes 
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Lighthill 1950), as well as flow around a finite body at  very low Reynolds number. 
incompressible flow along a slender cylinder (Stewartson 1955; Glauert t 
The layers shown in figure 1 also appear in flow over a body that does not grow as xi. 
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FIGURE 1.  Sketch of u and T profiles and gas layers for strong viscous interaction on 

slender body in hypersonic flow (r, - d, rs 6*+r,).  

A theory for axisymmetric hypersonic flow with strong viscous interaction 
and a strong shock has been presented by Stewartson (1964), who considers a 
model gas near the nose of a sharp cone (or of any body, where rw-+xn as x-+ 0 
and n > 2). In this paper, we correct a manipulative error in Stewartson’s results 
for the effect of surface temperature,? and we extend his solution to include gases 
with Prandtl number Pr other than one and with viscosity varying as the w 
power of enthalpy h. The major boundary-layer properties are obtained in closed 
form without recourse to numerical integrations, and the domain of validity is 
defhed (appendix A). 

As a check on the accuracy of the strong-interaction theory, numerical solu- 
tions of the self-similar, axisymmetric boundary-layer equations were obtained 
for three-quarter power-law bodies and a strong shock. These machine solutions, 
which are of interest in their own right, are described in $ 4  and extend earlier 
computations by Yasuhara ( 1962) to stronger interactions, where comparisons 
can be made with the present strong-interaction theory. 

t Stewartson’s results for a model gas have been confirmed independently by Solomon 
(1967), who also corrects for the effect of surface temperature. (Solomon, in addition, 
presentn a method of solution for model gases at finite speede.) 
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2. General equations 
The equations presented in this section are general in the sense that they apply 

both to strong viscous interaction over arbitrary slender axisymmetric bodies 
and to interaction of moderate strength over three-quarter power-law bodies. 

The boundary-layer equations for axisymmetric flow are simplified by trans- 
formation of the cylindrical co-ordinates (x, r )  to a modified form of the Lees- 
Dorodnitsyn (Lees 1956a) variables ($, 7): 

(2.1) 

Subscripts w and e denote values at the body surface and boundary-layer edge, 
respectively. The modifications are that r is no longer approximated by rw in the 
integral for r,~ and that the surface normal is taken to be directed radially. For 
slender bodies ( T ; / z ~  < I), this slight rotation of axes alters neither the equations 
nor the boundary conditions in the leading approximation. Equation (2.1) is 
essentially the transformation used by Yasuhara (1962), but not by Stewartson 
(1964). Let the dependent variables bef, which is the integral of (u/ue)dy;  g ,  the 
stagnation enthalpy ratio H/He;  and R, the spatial variable r2/rL. Then the equa- 
tions for streamwise momentum, energy and continuity are: 

0 = [(9 - mf,")w-19L-w"Rf,,l, + f 7 q  + PCS -f,") - 2$(f,fc, -f[f,,,, 
0 = ((9 - mf,2)w-19;-wm/ - 211 - WmfJ&/ + P'f9, - 2Prt.ff,gf -fcS,), 

(2.2) 

(2.3) 

Functions only of $ in (2.2)-(2.4) are m, which is a finite Mach number parameter; 
p, the pressure-gradient parameter; and A ,  the transverse-curvature parameter, 
which is later related to a viscous interaction parameter, A. For slender bodies 
where u, is essentially constant, these parameters become 

where y is the specific heat ratio and p the pressure. If A < 1, then R z 1, and 
(2.2) and (2.3) then describe a thin, plane, Mangler boundary layer. We are 
concerned instead with cases where A B 1 (as in $3) or where A is of order one 
(as in 94). 

We now restrict the discussion to hypersonic flows where M;2 < 1, and we 
set m = 1. This restriction is equivalent with the assumption that boundary- 
layer temperatures are elevated well above those in the inviscid layer. The body 
surface is assumed to be at  constant temperature (which includes the insulated 
wall case). We further limit ourselves to either flows where the viscous interaction 
is strong [where generally A = A ( x ) ]  or flows where the body grows as xg with 
arbitrary interaction strength, in which case A is constant. For these cases, it 
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will be shown that the pressure decays as (xlog A)-$. Then, within an error of 
order l/log A for the strong interaction case, 6,  ,8 and A are these functions of x: 

(2.5a) 

where $ is a function of x defined by 

( 2 . 5 ~ )  

For power-law bodies # is a constant. Note that vw = pm/pm. 
At the boundaries, it  is assumed that slip and temperature jump are unim- 

portant : 

and that external vorticity is unimportant: 

f,+l, g + l ,  R,+O as q+m. (2.7) 

The domain where these assumptions are valid is discussed in appendix A. 
The transformed equations will produce values for R(m), f , , ( O ) ,  and either 

g,(O) or g,. These can be related to displacement thickness 6*, surface pressure, 
viscous interaction parameter, skin friction, and heat transfer rate or recovery 
temperature as follows. The axisymmetric definition of 6" (Moore 1952) is 

rW+8' 
peuerdr = IrI (peue-pu)rdr. 

I r w  

For hypersonic flows, 6" and the boundary-layer thickness 6 differ by an amount 
that vanishes as M;2-+0, for all degrees of interaction, and r is bounded as 
q+m. It follows that 

It is now necessary to obtain a measure of the surface pressure. The pressure 
throughout the boundary layer and at  the surface is the inner limit of pressures 
in the outer, inviscid layer (figure 1) .  Equations for the inviscid layer are non- 
linear, but in the hypersonic small-disturbance limit considered here similarity 
solutions exist if the effective body ordinate re grows as certain powers of x, of 
which only the three-quarter power is of present interest. The three-quarter 
power-law inviscid solution has been evaluated numerically for y = 7/5 by 
Valesko et al. (see Chernyi 1961, pp. 87, 244) and for y from 1 to 513 by Kubota 
(see Hayes & Probstein 1966, p. 73). For a three-quarter power-law body (studied 
in 5 4), this inviscid similarity solution is clearly applicable. On the other hand, for 
strong viscous interaction (studied in $3)  it will be shown that re N S* grows as 
&[log A(x)]-*. The inviscid partial differential equations in this case can be ex- 
panded in inverse powers of log A(x). The equations of leading order have the 
same form and solution as those for constant A (i.e. the three-quarter power-law 
body case). The error incurred by using only the leading term in the proposed 
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asymptotic expansion is of the higher order (log A)-l. Combination of (2.8) with 
these numerical results for pJp* and re/r*, where stars denote evaluation im- 
mediately behind the shock at  the same x ,  leads to 

P w / P m  = ( j J f m r , / x ) 2 m a ) ,  (2.9) 

where 

Also 

0.846, y = 1-4, 
0.941, y = 1-67. 

Let a viscous interaction parameter A ( x )  be introduced by the definition 

A = (x2/rL) M$(p, umx/pm)-*. (2.10 a)  

A is used to characterize the viscous interaction because &/rw varies as A for weak 
interactions, because both parameters are large for strong interactions, and 
because A is a grouping of known parameters, whereas &/rw is not. Substitution 
of (2.9) into (2.5b) yields a relation for A in terms of the transformed variables 
and A :  A = [ (L)w+l %$gL-"B(m)] B A. 

4 y - 1  
(2.10 b )  

The skin friction coefficient is 

Assuming Cf N r;l, as will be shown in (3.26), andpw N x-*, we find that the total 
drag coefficient referred to base area 7rri is 

where L is the body length and Ab = (rb /L)-2Mz(pmu, L/p,)-* and where the 
pressure-drag contribution (last term in right member of equation (2.12)) applies 
for n = 2 only. The heat transfer rate to the wall is 

(2.13) 

where h = g,(O)/&(O). h is referred to later as a Reynolds analogy parameter and 
is constant for an isothermal wall if either A 9 1 or A is constant, the two cases to 
be considered in $0 3 and 4, respectively. 

3. Analytic solution for A 9 1 

In the strong-interaction limit the interaction parameter A, the transverse- 
curvature parameter A and &/rw are all very large. In  this limit the boundary 
layer for any slender axisymmetric body can be divided into two viscous layers 
(as in figure 1, which displays a three-quarter power-law body). One is an inner 
layer adjacent to the body where convective and pressure effects are unimportant. 
It is in the inner layer that the velocity and stagnation enthalpy profiles are 
principally developed. The other viscous layer is an outer, convective layer. In 

44-2 
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this layer velocity and stagnation enthalpy depart from corresponding values 
in the free stream by only small amounts, and convective and pressure terms, 
as well as the shear term, must be retained in the viscous equations. Other layers 
shown in figure 1 are not important in the rBgime of the present theory. 

(a )  Inner viscous layer 

It will be shown, (3.13) and (3.22b)) that f,,(O) is of order A/logA. Hence, in the 
immediate vicinity of the wall, f and 7 may be taken to be of order A-l (to within 
a factor log A )  while R, f, and g are of order AO. Substituting this ordering into 
(2.2) and (2.3) and neglecting terms of order A-2, one finds that only the first 
term needs to be retained in each right member. The reduced equations 
correspond to Couette flow, and integration with boundary conditions (2.6) 
yields 

9;-1f,,(o) = (9 -f,””,”-’Rf,,l (3.1) 

hg;-Y,,(O) = (9 -f?yR[g, - 2(1- Pr)f,f,,l. (3.2) 

The inner viscous layer is defined as the region for which (3.1) and (3.2) are 
applicable. With increase in 7, the error associated with these equations is of 
order q /A .  Hence (3.1) and (3.2) can be considered valid for 7 less than order Al. 
(When 7 is of order AO, so are f ,  f ,  and g, while R is of order Al.) 

Elimination of R and another integration provides an enthalpy integral: 

Since h/H,  is simply g- f,” in this approximation, whenever h > 0 the tempera- 
ture peak occurs within the boundary layer and has the value 

(h/f&)*V,T = 9w + h2/(4Pr) at f, = hl(2Pr). (3.4) 

The Reynolds analogy parameter h is a function of gw and Pr. It will be shown 
that h < Pr. Equations (2.4)) (3.1) and (3.3) provide the velocity profile and y: 

(3.5) 

The known constants are Pr, o and either gw or h, all of order Ao, and the in- 
definitely large parameter A. The unknowns are a constant of order Ao (either h 
or g,) and f,,(O). These are evaluated by matching the flow in the inner viscous 
layer with that in the viscous convective layer. 

( b )  Viscous convective layer 

In  the viscous convective layer, the terms representing the effects of viscous 
shear no longer dominate the equations of motion. With all terms retained and 
with m = 1, (2.2) and (2.3) become, after integration with (2.6)) 
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hf,,(O) = (g -&;)"-'gL-"&, - 2(1 - P.,f,f,,l 

+ P r [ s ( l + 2 g a / a g ) f - ( 1 + 2 5 a / a g ) S ? f 7 9 d y ] .  0 (3.8) 

Iff,,(O) is of order A/logA as assumed, the terms in (3.7) are of comparable size 
only if r j  and f are of order A,  and R is of order A2, with possible factors of log A. 
If these scalings are properly chosen, (3.7) and (3.8) reduce to ordinary differ- 
ential equations in terms of a new independent variable [, where [ is of order one 
in this layer. It will be seen that the following replacements are appropriate. 

(i) Variables: 
7 = CAE"$, 5 = 5, (3.9) 

R = Z([) A2~"f1$[l + O ( S ) ] ,  

f 7 = 1 -€F&[)-t-O(€2), 

g = 1 - EG([) + O(@) ,  

(3.10) 

(3.11) 

(3.12) 

where B = e(5) cannot be chosen until properties of the inner and convective 
viscous layers are matched. (It will be found that e is log A raised to a negative 
power.) Assume without loss of generality that F(o0) = 0. 

(ii) Operators: a/ar = (C/7)aPC, 

ta la6 = t a / a 5 -  [ d k  (r/c)/dlog51ca/aC, 

where, noting A# varies like x/@, (2.5)) and neglecting derivatives of e and 
log A (i.e. neglecting terms of order 6 )  

d 1% (rj/S)/d 1% 5 = - f + l/$. 
(iii) Parameters: 

h = hop + €A1 + 0(€2)], ( 3 . 1 3 ~ )  

(3.136) 

( 3 . 1 4 ~ )  

Soa (g  -f,") dy = A~"+l$r,[ 1 + O ( E ) ] .  (3 .14~)  

Equations (3.14) follow from the fact that the major contributions to each 
integral occurs in the viscous convective layer. 

With these replacements, equations (3.7), (3.8) and (2.4) become to leading 
order: 

fo = - (2Fc- G)"-'g&-"RFCc+ 2f1+ [(r - 1)/(2y)]B+ 2(F- Sli's), (3 .15~)  

h,fo = - g',-"( 2Fs - G)"-lR[G, - 2 (1 - Pr) Fss] + Pr ( 2g1 + 2 1 G dc - 2cG) , 
m 

(3.15 b) 

R = r1+2F- Gd[.  1: (3.15 c) 
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An alternate equation, involving only R, can be obtained. Multiply (3.15a) 
by 2Pr and subtract (3.15b). The result, using (3.15c), is 

l - - W R w - l -  - 
(2Pr-ho)fo = -9w 5 RR55.+22Pr((2f1-91--r,f+[(3y- ~) /c~y , lR-c41 .  

(3.16) 
At the outer edge of the boundary layer,? (2.7) and (3.10) indicate 

R&co) = F&co) = G(co) = 0. 

Specifically, as I;-+oo, <RS, <Fc and cG vanish algebraically if w < 1 [as noted by 
Bush (1966) for plane flow] and exponentially if w 2 1. Even here where S/r, $ 1, 
the outer edge of the axisymmetric boundary layer behaves as that for plane 
flow, in the hypersonic limit. Equations (3.15) become as <+CO 

f o  = 2fl + [(Y- 1 ) / ( 2 y ) l R 4 ,  (3.1 7 a )  

Aofo  = 129,)> (3.17b) 

R(m) = rl. ( 3 . 1 7 ~ )  

At the inner edge of the viscous convective layer R must vanish, from the 
scaling (3.9) and (3.10), and the convective termsin (3.16) and (3.15) must vanish. 

0 = R(O), 0 = 2f,-9,-r,, ( 3 . 1 8 ~ ~ )  
Thus 

r n  
(3.18b) 

Equations (3.17) and (3.18) provide ~ ( c o )  in terms of the unknownsf, and A,: 

acm, == [y/(3y - lfIfo(2Pr - Ao)/Pr. (3.19) 

Further matching of the convective layer with the inner layer is now considered 
in order both to demonstrate the validity of the present two-layer approxima- 
tion and to provide explicit expressions for A,, fo and e. As 5-t 0 ,  since RRCJRc 
can be written as dR</dloga, (3.16) becomes 

- [g;-"/(w+ 1 ) ] 2 ~ + 1  = (2Pr-h0)f,IogR+O(RO). (3.20) 

By dividing (3.16) by (3.15a) in the limit c + O  and noting (3.15c), it is found 
that 

(3.21) 

The inner viscous-layer solution (3.3) for g(f,), expanded in terms of G and 

(3.22a) 

Fs and truncated after order e, matches (3.21) if 

A, = Pr - gw. 

t As a consequence of assuming that g-rn$; is proportional to 2Pc-G,  we need t o  
strengthen the requirement that M i z  < 1 and require instead M;2 < B < 1. In this case 
the velocity components, pressure, and stagnation enthalpy in the viscous convective layer 
can be matched to their invisoid-layer counterparts, but the temperature, density, and 
Mach number cannot (Bush 1966). This last difficulty does not alter the boundary con- 
ditions proper for the outer edge of the viscous convective layer, noted above. 
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Similarly, expansion of (3.5) in terms of E and f,, to Ieading order provides 

where 

(3.22 b )  

(3.23) 

Special values of J are 
+(Pr + 3gw), w =  1, 

J =  (Pr)"B(w+l,w+l), g,=O, i 4 ( P r ) ~ B ( o +  1, w +  I), g, = Pr. 
B(w + I ,  w + 1) is the Beta function and equals 8 for w = 1 and 0-2540 for 

o = 2. An approximate expression for J is 

J E [Q(Pr + 3gw)lw, (3.24) 

with an error less than 4 yo when 0.5 < w < 1. 
Matching ~ ( f , )  from (3.6) with a relation not shown for g(P,) can be accomp- 

lished but contributes no new information. The assumptions that E was log A 
t o  a negative power and that f,,(O) was of order A/log A have now led to a con- 
sistent analysis. In  particular, substitution of (3.22) into (3.15)-(3.21) confirms 
that y is a similarity variable for the viscous convective layer, since no functions 
of 5 appear. 

If field properties within the viscous convective layer are required, it is neces- 
sary to solve this initial-value problem numerically. In  particular, Stewartson 
(1964)foundR(c)forPr = w = l a n d 7  = ~from(3.16),(3.18u)and(3.20).Pand 
6' can be computed from (3.15a) and (3.15b) using initial conditions 

obtained from (3.17) to (3.22). If, however, one is content with a solution for the 
inner viscous layer and integral boundary-layer properties, one need only collect 
formulae already obtained. Combining (2.10b), (3.10), (3.13), (3.19) and (3.22), 
we find that 

and 

Prom (2.10b), A and A are related by 

(3.25~) 

(3.25 b )  

(3.25 c) 

so that A is of order A2/(logA)*. With this information, all boundary-layer 
parameters can be expressed in closed form. 
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( c )  Properties at the wall and shock 

The boundary-layer edge and shock-wave locations are 

6 = r,[R(c73)14 ?* = (ra/re)r,[R(m)l~. ( 3 . 2 6 ~ )  

The surface pressure ratio is 

The skin friction coefficient is 

( 3 . 2 6 ~ )  

The drag coefficient is due to friction, since the pressure-drag coefficient varies 
as the square root of the friction-drag coefficient, which is large compared with 
one. Note that C, - (r,)-l, as previously assumed; therefore, drag per unit length 
is constant : 

(3 .26d)  

Lastly, the heat transfer rate is 

9 = P,U%C,(Pr-g,)/(4Pr). (3.27) 

Equations (3.25)-(3.26) show that p N (x1ogA)-* and that re N 6 N x4 (logA)-*, 
consistent with the corresponding a priori assumptions for (2 .5 )  and (2 .9) .  The 
pressure, friction, and heat transfer at any x are unaffected by the arbitrary body 
thickness a t  any other x, in that the function #(x) does not appear in these ex- 
pressions. 

When y is p and w is one, (3.26) reduces to: 

S/r, = 0.849[(Pr  + 9,) ( P r  + 3g,)/(8Pr)]~As(logA2)-t, 

r&, = 0.971[(Pr  + g , )  (Pr+ 3g,)/(8Pr)]-4hg(logAZ)-~, 

(3.28) 

(3 .29)  

(3.30) 

(3 .31)  

When Pr is one, (3.27)-(3.31) are Stewartson's (1964) results, except for correc- 
tions in the brackets for the effects of wall temperature. Stewartson anticipated 
that departures from model-gas properties would not differ seriously from his 
results. It is now clear that when the wall is either cold or insulated both C, and 
q vary as PrW and surface pressure varies as P d W .  

The present results indicate the correction to apply to w = 1 solutions for 
shea,r, heat transfer and displacement to account for w =l= 1. From (3 .25)  to (3 .26) ,  
it  is seen that v,/uoox, in the w = 1 solution, is replaced by Cu,/u,x, where 

p,/p, = 0 .517[ (Pr+gW)  (Pr+ 3g,)/(8Pr)]~M3,(u,xlogA2/u,)-~, 

C, = (s) [(Pr + 3g,)/4] ( r , / ~ ) ~ h ~ / l o g A ~ .  

c = (Pr/Poo) (Tm/T) (3 .32)  

and T, is a reference temperature defined by T,/T, = ( J /  J1)lI(W-l). Here J1 = (J),=l 
and T, is &he free-stream stagnation temperature. With the approximation (3.24), 

?/To E (Pr+ 3g,)/6. (3.33) 
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Cheng, Hall, Golian & Hertzberg (1961) derived (3.33) for the special case 
Pr = 1 and two-dimensional boundary layers. The reference viscosity, p, = p(T,), 
is seen to correspond to an average value in the boundary layer, where the 
average is taken with respect to velocity (i.e. J N Jpdu). 

4. Numerical solution of self-similar equations when A = O( 1) 

When the body grows as x2, when the shock wave is strong, and when the 
viscous interaction is of finite strength, the flow is self-similar but requires 
numerical computations. Equations (2.2)-(2.4), without the a/a[ terms and with 
both m and w equal to one, have been integrated numerically as a two-point 
boundary-value problem by Yasuhara (1962) for A < 10 where either ,8 + or 
gw = Pr = 1. Additional computations have now been done for those cases 
where ,4 = A, Pr = 1 or 0.7, either gw or g,(O) vanish, and A = 0, 1, 5, 10, 100, 
103, or 105. In each case it was possible to find a solution that satisfied all the 

Pr 

1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 

0-7 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 

0.7 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 

g, 

1 
1 
1 
1 
1 
1 
1 

0 
0 
0 
0 
0 
0 
0 

0.8308 
0.8166 
0.7984 
0.7904 
0-7700 
0.7578 
0.7447 

0 
0 
0 
0 
0 
0 
0 

h 

0 
0 
0 
0 
0 
0 
0 

0.9671 
0.9687 
0.9729 
0.9758 
0.9843 
0.9885 
0.9919 

0 
0 
0 
0 
0 
0 
0 

0.7148 
0.7150 
0.7154 
0.7156 
0.7154 
0.7138 
0.7110 

A f,,(O) 

0 0.5557 
1 0.7578 
5 1.3625 

10 1.9705 
100 9.409 

103 59.60 
lo5 3369 

0 0.4909 
1 0.5360 
5 0.6983 

10 0.8765 
100 3.115 

103 17.616 
lo5 918.6 

0 0-5464 
1 0.7183 
5 1-2286 

10 1-7379 
100 7-841 

103 48.05 
105 2624 

0 0.4871 
1 0.5224 
5 0.6510 

10 0.7935 
100 2.587 

103 13.999 
lo5 703.0 

R(m) - 1 
A 

1.558 
1.934 
3.094 
4.291 

18.76 
114.7 

6301 

0.4357 
0.4757 
0.6185 
0.7759 
2.744 

15.489 
805.6 

1.4426 
1.7458 
2.6905 
3.655 

15-202 
90.37 

4819 

0,3743 
0.4034 
0.5109 
0.6288 
2.117 

11.655 
594.4 

A 
A 
- 

2.115 
3.623 
8.584 

14.02 
91.64 

716.5 
53,096 

2.115 
2.569 
4.280 
6.260 

35.10 
263.3 

18,985 

2.115 
3.505 
8-041 

12.96 
82-49 

635.9 
46,430 

2-115 
2.506 
3-988 
5.710 

30-85 
228-4 

16,308 

1 
1 
1 
1 
1 
1 
1 

0-238 
0.239 
0.240 
0.241 
0.243 
0.245 
0.246 

0.8308 
0.8166 
0.7974 
0-7904 
0.7700 
0.7578 
0.7447 

0.187 
0.187 
0.185 
0.185 
0.185 
0.182 
0.180 

TABLE 1. Numerical results for self-similar axisymmetric hypersonic flows 
(w = 1, y = 5, r ,  - & 
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- 

- --&--=.&-&+---= 0.2 - + 
00- 

0.1 - - 

I I I I 0.0 - 

boundary conditions and for which f increased monotonically with 7. Overshoot 
in g ( 7 )  was exhibited in all insulated-wall cases for 7 greater than approximately 
[ f , , (O)  A]). The results needed to find the principal boundary-layer properties 
appear in table 1 and figure 2. 

In  figures 2 a and 2 b;  the variables R(w) and f,,(O) are presented through use 
of normalized functions Fl and F, where 

I I I I 1 

log,, ( 1 + A) 

(b) 
FIGURE 2. Self-similar hypersonic flow over slender axisymmetric body (T, N zg, w = 1, 
y = 7/5). (a )  Skin friction parameter, -F; [equation (4.1)]. ( b )  Displacement thickness 
parameter, P, [equation (4.2)]. (c) Drag coefficient. (d )  Velocity end stagnation enthalpy 
profiles near wall. 
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These functions were chosen so as to produce ordinates of order one for all degrees 
of interaction. The close grouping of curves in these figures means that principal 
flow properties can now be predicted with an interpolation error of less than 
10 yo given arbitrary A, Pr, and either gw or g,(0). Figure 2c shows the very large 

Equation (3.26) 
1000 

100 

m a  . 
5 
u” 

10 

I I I I I  I I I l l  1 
10 100 

l + A  

(4 

g[& (0)/A]-’12 

0 I I I I 
0 1 2 3 4 5 6 

ln (1 +r[f,,(O)AP) 

(4 
FIGURE 2. For legend see facing page. 



0.8 

0.6 

0.4 

0.2 

Lg, = 0 
0 . I 1 1 "  I 1 1 1 1  I 1 1 1 1  I 1 1 1 )  I 1 1 1 1  I 1 1 1 1  I 1 1 1 1  I I 1 1 "  I I I 

100 10' 102 103 104 105 lo6 107 108 109 1010 

A 

FIUURE 3. Ratio of asymptotic strong-interaction solution [equation (3.26)] to exact 
solution (table 1) for three-quarter power-law bodies (Pr = 0.7, y = 1.4, w = 1). 

In  figure 3 is shown the ratio of pressure and skin friction coefficient from the 
strong-interaction theory, (3.26)) to exact values (table 1) for three-quarter 
power-law bodies and Pr = 0.7 (w = 1, y = p). These errors are comparable with 
the theoretical error E N (logA)-t for w = 1. Although the convergence of the 
theory as A -+ co is slow, the errors remain of order one for A > 1. 

5. Discussion 
The present axisymmetric strong-interaction theory represents an extension, 

to values of Pr and w other than one, of Stewartson's (1964) theory for a model 
gas. Unlike Stewartson, the major boundary-layer properties have been obtained 
without recourse to numerical integrations. The outstanding feature of axi- 
symmetric strong-interaction theory is its uniquely slow rate of convergence in 
the interaction parameter; namely, its error N (logA)-l'(u+l). It has been seen 
in figure 3 that even for A = 105(A - lo9) the error in the axisymmetric strong- 
interaction theory ranged up to 20 yo. Appendix A shows that the theory has a 
domain of validity that is too restrictive for most practical applications. The 
theory does suggest ways of interpolating numerical data for interactions of only 
moderate strength (as in $4) and does provide starting values for numerical 
integrations of finite-interaction equations for sharp bodies. It also determines the 
reference temperature to improve solutions employing a linear-viscosity 
approximation. 

For bodies which grow as xn where n < 2, A increases with x and strong inter- 
action occurs downstream, if at  all. If n > $, the interaction is strongest near the 
nose. For n = 2, the interaction parameter A is independent of x. 
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Finally, some remarks concerning parameters and terminology are in order. It 
is important to distinguish three parameters when considering hypersonic viscous 
interaction on axisymmetric bodies. These are a shock strength parameter 
(M,d re/dx)2, a transverse curvature parameter S/rw and a 'pressure ' interaction 
parameter pw/(pw).2 where pw is the local surface pressure and (pW)( is the corre- 
sponding value for inviscid flow. The latter parameter defines the degree of 
viscous interaction. In  the present study, it was assumed that the shock is always 
strong, (Mad re/dx)2 >> 1. As a result, the single parameter A characterizes both the 
magnitude of the transverse curvature S/rw and the viscous interaction pw/(pw)i. 
For more moderate shock strength, large values of S/r, need not imply a strong 
interaction (e.g. the flow far downstream of the nose of a cylindrical body). For 
two-dimensional flows, the transverse curvature parameter does not apply. In  
the special case of a flat plate, and only in this case, the shock strength and the 
degree of viscous interaction are both characterized by the familiar parameter 
M$,+"(v,/u, x)g.  

This work was supported by the United States Air Force under Contract 
no. F04695-67-C-0158. The authors gratefully acknowledge stimulating dis- 
cussions and critical review by Professor H. K. Cheng of the University of 
Southern California. The numerical solutions were obtained by E. H. Fletcher, 
Aerospace Corporation. 

Appendix A. Validity of strong interaction solution 
This appendix translates the assumptions of strong interaction, continuum 

flow, no vorticity interaction, strong shock, and sharp nose into requirements 
on free-stream Mach number, Reynolds number, body slenderness, and nose 
thickness. The present theory is believed valid for arbitrary positive values of 
the parameters w ,  Pr, y -  1 and gw. 

Rarefaction effects such as surface slip and temperature jump have been 
neglected. The local ratio 3 of mean free path to an appropriate characteristic 
thickness is taken as a measure of these effects. Although the mean free path 
reaches a maximum where the temperature peaks-viz. in the inner viscous 
layer at  a velocity ratio (Pr - gW)/(2Pr), from (3.4) and (3.22a)-the ratio 9 may 
be greater at  the wall than at  the maximum temperature location (figure 1). At 
the wall, the characteristic thickness is taken to be the ratio of u, to (aujar),, 
and it is easily shown that 

gw.- (P% ---c,.- 
(pa), log A 7 

where a is the speed of sound and R e ,  , = u,x/v,. At the maximum temperature 
location, the characteristic thickness is the square root of the local ratio of h to 
d2h/dr2, which is of the same order as the local value of drldf,,, found from (3.5). 
If $2 there is denoted as gmIT, 

3%IT [ A ~ - ( J X ~ J )  (log ~ ) - 1  M Z R ~ . & I ~ ,  (A 2 )  
(P?. -gw) / (  2P7) 

where (gw + Prt)" (1 - t)"dt. 
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Comparison of (A 1) and (A2) reveals that 9fW > gMT, that is, slip and tempera- 
ture jump are the dominant rarefaction effect, whenever gw > A-JMTIJ. 

Errors at  the outer edge of the boundary layer can be grouped under the label 
of shock-wave heating and vorticity. At hypersonic speeds, the mass flux in the 
two viscous layers is very small, so that streamlines entering the boundary layer 
previously have crossed the shock wave far upstream near the leading edge, 
where the shock has relatively more slope and is highly curved. As a result, the 
effect of vorticity and the levels of entropy and (i.e. shock heating effects) at 
the outer edge of the convective layer may not be negligible. Lees (19563) has 
shown for strong viscous interaction in plane flow that errors due to these effects 
are of order (M",e;,$Jk, where, for w = 1, E is the proper fraction 1 - 2/(3y). 
For axisymmetric strong interactions, the order of these effects is again a frac- 
tional power of M:Re&, a power that depends on y and w . t  

Whereas neglecting shock heating errors requires only that a power of 
M!$,Re,& be small, neglecting either rarefaction errors (Al)  or (A2) requires 
that M",e;i be exponentially small, since for the viscous interaction to be 
strong (8 < I), A must be exponentially large. It is this combined requirement of 
strong interaction and continuum flow that is hard to satisfy in practice, and 
hence upstream departures from the strong interaction theory are always 
dominated by rarefaction effects at  or near the wall. For slender axisymmetric 
bodies the shock-heating error becomes as important as the rarefaction error 
when the viscous interaction is of moderate strength in the sense log A = O( l ) ,  
in which case the shock-wave shape and the exponent k depend on body shape as 
well as on y and o. 

Three other parameters must also be exponentially small in e. These are 
r&/x2, M;2 and d/x, where d is a nose-thickness dimension. r;/xz is just the ratio 
of M!$, Re;$, which must be exponentially small, and A, which must be exponenti- 
ally large. The requirement on M;2 is obtained by observing that the product of 
M2, and M",e& is the shock strength parameter, which must be large. Finally, 
the nose drag is negligible compared with the viscous drag only if d/x is much 
less than the exponentially small product Mg( Re,,oo log A)-&. 

Despite these constraints on the present theory, it can be used to identify 
trends with Pr, gw, y and w ,  to provide starting values near the nose for con- 
tinuum-flow models where n(0) > $, and to establish the linear-viscosity 
approximation (3.32). 
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